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Abstract—Multiple-input Multiple-output (MIMO) technology
uses multiple transmitter and receiver antennas for improving
throughput and coverage. Massive MIMO is an advancement
of MIMO technology that utilizes large numbers of antenna
terminals at both transmitter and receiver to provide high
spectral efficiency with simple processing. Massive MIMO today
has become a captivating technology for future generation net-
works. Traditional linear, non-linear, and iterative uplink signal
detection algorithms for massive MIMO systems do not provide
optimal performance, and are computationally inefficient. This
paper proposes a fast-convergent detector for massive MIMO
systems based on the refinement of the Jacobi iterative method.
The proposed algorithm utilizes a novel initialization matrix and
a successive over-relaxation (SOR) preconditioner to enhance the
convergence of the proposed method. The numerical results verify
the optimal error and complexity performance of the proposed
algorithm for uplink signal detection in massive MIMO systems.

Index Terms—— 5G, Beyond 5G, 6G, BER, complexity,
MIMO, massive MIMO, signal detection

I. INTRODUCTION

MIMO is the foundation of most of the current wire-
less standards such as Wi-Fi, 4G LTE, LTE-Advanced, and
WiMAX [1]- [3]. MIMO systems provide enhanced area
throughput compared to the traditional single antenna system.
But with the exponential rise in wireless data traffic in the last
decade, traditional MIMO has reached its throughput limits.
Additionally, with new technologies such as the Internet of
Things (IoT), and several smart city applications, there is a
colossal increase in wireless data traffic. According to the
Ericsson mobility report, there will be more than 370 exabytes
of mobile traffic per month [4].

The future generation networks should address the growing
demands and provide the user with a high data rate and
reliability. Recently, researchers have come up with a novel
multiple access technology known as massive MIMO. This
technology is considered a core element for future generation
networks. Massive MIMO is a state-of-the-art version of
the long-established MIMO system, and it uses hundreds of
antenna terminals at the base station. With massive MIMO
technology, mobile networks can serve several users at the
same time with better reliability, coverage, and accuracy. This

technology also provides better energy and spectral efficiency,
[5]- [8] compared to the traditional MIMO. Massive MIMO
uses hundreds of extremely low power antenna terminals; thus,
power consumption is not significantly increased with higher
antenna providing better energy efficiency [9]- [10]. Massive
MIMO also provides beamforming capability,i.e, base station
can adapt the antenna radiation pattern. Beamforming helps
to focus signals towards the indented users, and with the
higher number of antennas, beams become narrower and more
concentrated towards the user. This phenomenon helps the user
get better quality of service even if the user is at the edge of
the hexagonal cell or inside a building. Further, these narrow
beams also reduce the interference to the unintended users
nearby the designated user. Some other significant benefits that
massive MIMO provides are better link reliability, high array
gain, low latency, and improved coverage [11]- [12]. Figure 1
shows a massive MIMO system.

Fig. 1: Massive MIMO.

A. Relevant Prior Art and Motivation

Although we get immense benefits with a massive MIMO
system, it comes at the price of increased computational
complexity at the base station. The complexity of uplink data
detection at the base station increases due to hundreds of
antenna terminals at the base station communicating simul-
taneously with many users. The conventional detectors used
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for MIMO are not efficient for Massive MIMO systems as
their computational complexity rises exponentially with the
number of antenna terminals. Recently, there have been several
research studies to find computationally efficient and optimal
detectors for massive MIMO systems. Linear and non-linear
detectors such as Maximum Likelihood (ML), Minimum Mean
Square Error (MMSE), Zero-Forcing (ZF), and Successive
Interference Cancellation (SIC) provide optimal error perfor-
mance [13]- [17]. However, these methods involve matrix
inversion, and for large antenna systems, matrix inversion is
computationally not efficient. Several other iterative and non-
iterative algorithms were designed to reduce the complexity.
Methods such as Gauss-Seidel (GS) [18], Richardson [20],
Neumann Series Approximation (NSA) [21], and Conjugate
Gradient (CG) [22] are better in terms of complexity. Some
other iterative methods have received significant results [23]-
[24]. The conventional Jacobi [19] method has also been used
in signal detection, which has the acceptable computational
complexity but fails to provide the optimal error performance.
Several machine learning and deep learning approaches have
been used for complex analysis in massive MIMO. These
approaches are mostly in the areas of channel estimation,
beamforming, and signal detection. Some of the recent work
have received significant results [25]- [29].

Our proposed algorithm is based on the refinement of the
conventional Jacobi method. The proposed method provides
optimal error performance and complexity. We apply a pre-
conditioner based on the Successive over-relaxation (SOR)
method to further accelerate the converge. In addition, we use
an initialization vector to further accelerate the algorithm’s
convergence. The simulation results verify the performance of
the proposed algorithm.

B. Paper Outline

The organization of the rest of the paper: Section II-A we
describe the system model for the massive MIMO system used
for the simulation. Section II-B, we discuss the basics of the
Proposed algorithm. In section III, we introduce the steps and
parameters used for the simulation. Section III presents the
results and analysis and the paper is concluded in section V.

II. SYSTEM MODEL AND PROPOSED ALGORITHM

A. System Model

We have considered a system with N single antenna users
communicating. These N users are assumed to be communi-
cating concurrently with a massive MIMO base station having
M antennas terminals, where (M≫N). We have assumed
perfect channel properties, i.e., perfect Channel State Infor-
mation (CSI), and to lessen the effect of interference, we have
assumed long cyclic prefix [30]. For the channel model, we
have assumed the Rayleigh Fading channel model between the
users and the bases station. According to the Rayleigh Fading
channel model, the signal flowing through the communication
channel varies according to the Rayleigh distribution. Each
user terminal encodes the information bits. Once the bits
are encoded, they are mapped into the constellation point.

They are mapped using n-QAM (Quadrature Amplitude) and
BPSK (Binary Phase Shift Keying) Modulation [31]. The
relationship between the signal transmitted by the users x
and the signal received at the receiver (base station) y can
be characterized as:

y = Hx+ n (1)

where, x ∈ CN is the signal transmitted by the single
antenna user terminals, y ∈ CM is the signal received at the
receiver base station, H is the channel vector whose elements
H ∈ CM×N are independent and identically distributed (i.i.d)
with zero mean and unit variance i.e. H ∼ CN (0, 1). Vector n
is a circularly symmetric complex Gaussian white noise. Each
element of vector n ∈ CM is i.i.d with n ∼ CN (0, σ2I).The
system model is shown in Figure 2.

Fig. 2: System model for uplink massive MIMO Systems.

ZF and MMSE are simple linear detectors used for uplink
signal detection. ZF eliminates interference but suffers from
noise enhancement, whereas MMSE reduces both interference
and noise. The ZF detection can be expressed as [39]:

xZF = (HHH)−1HHy (2)

The MMSE detector can be expressed as [39]:

x = (HHH +
σ2

n

σ2
x
I)−1HHy (3)

where, noise variance is represented by σ2
n and σ2

x is the
signal variance. ZF and MMSE both provide optimal error
performance but in terms of computational complexity they
are not near optimal.

B. Proposed Algorithm

The proposed algorithm is based on the refinement of the
Jacobi iterative method. To boost the converge, we introduce
a preconditioner based on the SOR method. Additionally, we
apply a novel initialization vector to boost the convergence
rate. To reduce the complexity, a lot of complex mathematical
computations are evaluated outside of the algorithm loop. If
we can evaluate complex functions outside the loop, we won’t
have to do it every iteration. This reduces the computational
complexity required for signal processing.



The inputs to the proposed algorithm are y,H, σ,M,N .
From (3), the near-optimal minimum mean square detector
is :

Wx = Y (4)

where, Y = HHy and W = (HHH + σ2
n

σ2
x
I)−1 is called

grammian matrix. This is required to avoid the computation-
ally complex matrix inversion in linear methods.

In the Jacobi method, the linear system Wx = Y can be
expressed in the form x = Y x+ c. The coefficient of matrix
W can be splitted as as sum of diagonal matrix D, upper
triangular matrix U , and lower triangular matrix L:

W = D + L+ U (5)

where . The Jacobi method for the above equation is given
as [32]:

xi+1 = D−1Y −D−1(L+ U)xi (6)

where, xi is the user signal estimated after kth iteration.
The Jacobi method for row strictly diagonally dominant

matrix W can converge for any random initial vector xo.
To improve the converge of the Jacobi method, we do the

refinement of Jacobi method. Putting (5) in (6), we get:

Y = Wx

⇒ Y = (D + L+ U)x

⇒ Y − Ux = (D + L)x

Using (5) in above expression, we get:

Y − (W −D − L)x = (D + L)x

⇒ Y (D + L)−1 −Wx(D + L)−1 + x = x

⇒ x = (D + L)−1(Y −Wx) + x

Hence, the formula for iterative refinement in the matrix form:

xi+1 = (D + L)−1(Y −Wxi+1) + xi+1 (7)

Where, xi+1 shown in right hand side of (7) given in (6)
From (6) we can obtain the refinement of Jacobi method in

matrix form:

xi+1 = (I −D−1(L+ U))D−1Y + (D−1(L+ U))2xi (8)

The proof of the (8) is presented in [33], and it converges
relatively faster than the traditional Jacobi method and GS
method. To further improve the convergence, we apply the
SOR preconditioner to the above solution in (8). The improved
convergence means fewer iterations required during the loop
processing, which helps in reducing the processing time and
complexity of the algorithm. The idea is to modify the system
Wx = Y into a similar fast converging preconditioned system

Ŵhx̂ = Ŷ . To apply the preconditioner, we transform the
system in (4)

C−1Wx = C−1Y (9)

where, C ≈ W is a non-singular matrix. The value of
preconditoner C should be chosen such that Ŵ = C−1W
[34]. In this paper, we have used SOR preconditioner:

CSOR =
1

p
(D + pL) (10)

where p is the relaxation parameter which can be approxi-
mated as [35]:

p =
2

1 +

√
2

(
1−

((
1 +

√
N
M

)2

− 1

)) (11)

Here, convergence proof of (11) is presented in [35]. The
value of the relaxation parameter is based on the value of
M and N . Since the value of M and N is initially fixed
when the MIMO configuration is set, its value doesn’t change
when the channel state is changed. The relaxation parameter is
initially computed once outside the algorithm iteration when
the MIMO configuration is set. Thus relaxation parameter
has a minimal effect on the computational complexity of the
algorithm.

In general, iterative algorithms use zero vectors to initialize
the final estimation. But, initializing the system with zero
vector required more iteration to come near the final solution,
thus degrading the algorithm’s convergence. If the initial
estimate is closer to the final solution, we can significantly
reduce the number of iterations required, improving the overall
algorithm’s convergence. The initial solution we are using is
based on the values that we have computed in earlier steps of
the algorithms, i.e., D, L, and U:

x0 =
Y

(D − L− U)
(12)

Since the values of a L, U, and D matrix are computed in
previous algorithm steps, it adds minimal computational cost
and improves the convergence of the algorithm. Algorithm 1
summarizes the proposed algorithm.

III. SIMULATION SETUP

For conducting the simulations, we have assumed a massive
MIMO base station having 16 to 512 antenna terminals. The
base station antenna terminals are supposed to be communi-
cating concurrently with 16 users having a single antenna. We
compared the error performance (BER) and complexity of the
proposed algorithm with convectional iterative algorithms like
MRC, Jacobi, CG, and GS. ML algorithm, which provides
the theoretical maximum error performance, is used as a
benchmark algorithm. Table I lists the parameters used for
the simulations. We have used a system bandwidth of 20
MHz, and the frame duration of 10ms and slot duration of
0.5 ms is used.The uncorrelated Rayleigh fading is used as



Algorithm 1 Proposed Algorithm
Inputs: y,H, σ2

n, σ
2
x, N,M

Pre-processing Steps:
1) Compute the grammian matrix: W = (HHH + σ2

n

σ2
x
I)

2) Evaluate Y = HH ∗ y
3) Make matrix W sparse: Ŵ = sparse(W )
4) Evaluate the D, U and L matrices:

D = diagonal(Ŵ )
U = upper(Ŵ )
L = lower(Ŵ )

5) Evaluate relaxation parameter:
p = 2

1+

√
2

(
1−

((
1+

√
N
M

)2
−1

))
6) Evaluate SOR preconditioner: CSOR = 1

p (D + pL)
7) Apply preconditioner:

W̃ = C−1
SOR ∗

(
Ŵ

)
Ỹ = C−1

SOR ∗ (Y )

8) Compute D̃, Ũ , and L̃ from W̃
D̃ = diagonal(W̃ )
L̃ = lower(W̃ )
Ũ = upper(W̃ )

9) Estimate the initial solution: x0 = Y
(D−U−L)

Algorithm iteration:
10) for i = 1 to imax do
11) xi+1 = (I − D̃−1(L̃+ Ũ))D̃−1Ỹ + (D̃−1(L̃+ Ũ))2xi

12) End for
Estimated output: xi

the channel model with carrier frequency of 2.5 GHz. Four
different modulation schemes have been used to conduct the
simulations: BPSK, QPSK, 16QAM, and 64QAM. A signal
variance of 2.5 is used, while noise variance is dependent on
the value of SNR (Signal-to-Noise Ratio). The SNR of 0f 0dB-
25dB is used for the simulations. Some general simulation
steps are shown in Figure. 3.

TABLE I: Simulation Parameters.

Parameter Value

Base Station Antenna Terminals 16 to 512
Mobile Users 16

Bandwidth 20 MHz
Frame duration 10 ms
Slot duration 0.5 ms

Carrier Frequency 2.5 GHz
Variance in User Signal 2.5

SNR 0 dB - 25dB
Modulation Scheme BPSK, QPSK, 16QAM, 64QAM

Channel Model Uncorrelated Rayleigh Fading

IV. SIMULATION RESULTS

A. BER Performance

BER is widely used to measure the performance of iterative
algorithms. BER is computed as the ratio of the number of

Fig. 3: Summary of simulation steps.

error bits to the number of total bits [36]. The BER perfor-
mance with 32 base station antenna is shown in Figure. 4.
The simulation was conducted with 16 users and 16QAM
modulation. The performance of the proposed algorithm is
near-optimal (ML), and it is better than traditional signal
detection algorithms. For example, at BER = 10−2, a gain
of 4.3dB was achieved by the proposed algorithm compared
to the GS algorithm. Furthermore, with 64 antenna terminals
at the base station, the error performance of most of the
algorithms got better, as shown in Figure. 5. There was no
significant change in MRC and Jacobi algorithms because the
number of antennas has little to no effect on the performance
of these algorithms. This improvement on algorithms other
than MRC and Jacobi is due to the higher array gain with more
base station antenna terminals. As a result, the performance of
our proposed algorithm is closer to the optimal. For example,
if we look at BER = 10−2, the proposed algorithm has a more-
or-less, better-improved performance over the GS method, and
it is outperforming the CG method by gaining a 4dB SNR.

Fig. 4: BER vs. Average SNR performance with 32 base
station antennas.

For our next experiment, we gradually increased the number
of antenna terminals at the massive MIMO base station. The
BER performance with the increasing number of base station
antenna terminals is shown in Figure. 6. For this experiment,
we have used 16 QAM modulation and 16 single-antenna



Fig. 5: BER vs. Average SNR performance with 64 base
station antennas.

users. The BER performance has improved considerably for
all the algorithms due to the higher array gain we get with
more antennas. For example, in Figure. 6, at BER = 10−3,
the 512 antennas system has 10.2 dB gain compared to 64
antennas system and 15.1 dB gain compared to 32 antenna
system. But with the increase in antenna terminals, the com-
putation complexity also increases at the base station. More
on complexity is discussed in Section IV-B.

Finally, we conducted simulations with different modulation
schemes. For this experiment, we have utilized a 32 antenna
massive MIMO system along with 16 users. Figure. 7 shows
the performance with various modulation schemes in this
configuration. The simulations results show that the BER
performance is best with BPSK modulation, whereas it is worst
with 64-QAM modulation. However, the higher modulation
order provides a higher data rate which may be helpful
for several real-time applications. Thus, choosing an optimal
modulation order is an important design consideration and
should be decided based on the real-world application.

B. Complexity Performance

To assess the computational complexity of the algorithms,
we have used Big O time complexity notation. Big O usually
represents the worst-case scenario of the algorithm [37], [38],
[40], [41]. This notation gives us an idea of the execution
time taken by the algorithm based on the number of steps
required to complete it and the size of the input. Our proposed
algorithm is iterative; its complexity mostly depends on the
number of loop iterations during the signal processing. If i
is the number of loop iterations, the Big O of the proposed
algorithm was evaluated in the order of ON2i. The complexity
of CG, GS, and Jacobi algorithms are also similar since the
proposed algorithm needs a few iterations ( (∼ 3) to get to
the final solution. However, the traditional linear algorithm like
ZF, MMSE, and ML have very high computational complexity

Fig. 6: BER vs. SNR performance with different base station
antenna terminals.

Fig. 7: BER VS. SNR performance with different modulation
schemes.

in the order of O(MN2) [42], mainly depending on the
number of the base station antennas. As the number of base
station antenna terminals (M ≥ 16) is much higher than the
number of iterations ((∼ 3), the complexity of the proposed
algorithm is found to be better than the conventional iterative
algorithms.

TABLE II: Computational Complexity.

Algorithm Complexity

MMSE, ZF, ML O(MN2)
CG O(MN2)

GS, Jacobi O(N2i)
Proposed ON2)i



V. CONCLUSIONS

This paper proposes an algorithm for user signal detection
using the refinement of the Jacobi method. The initial acceler-
ation was achieved using a preconditioner based on the SOR
method, whereas an initialization vector was used to further
speed up the convergence. We analyzed the performance of the
proposed algorithm in various scenarios by comparing it with
several existing iterative and non-iterative algorithms like CG,
GS, MRC, Jacobi, and ML. The numerical results from the
simulation showed that the proposed algorithm has improved
performance over conventional algorithms. The results from
the simulation showed that the performance improves larger
base station antennas, whereas the low modulation order
performed better in terms of error performance. However, it
should be noted that the higher modulation order provides a
higher data rate which may be helpful for several real-time
applications. Thus, choosing an optimal modulation order is an
important design consideration and should be decided based on
the user application. These novel signal detection algorithms
will help us realize the goals of 5G, 6G, and beyond networks.

Our future goal is to test this simulation with many multi-
antenna users. We also want to test this simulation with more
base station antennas and introduce more real-time network
parameters. There are still many challenges and questions
before we realize the full potential of massive MIMO systems.
Indeed unintended outcomes and novel challenges abound.
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